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ordinates of an atom in a lattice be Xi ~and that 
Xi: respectively, where m defines the partic-

1<1>31 - 81 Hoi, 
1<1>41 - 821H ol, ular unit cell, JL defines the particular atom in 

that cell and i defines the co-ordinate direction 
[1,3]. For convenience, this notation will be 
contracted here by replacing (m, JL, i) by a, 
(n, v,j) by {3, etc. The displacement JL" is 
defined as 

(1) 

and the displacement gradient, ea/3 , as 

(2) 

where the long notation is used because the 
summation is only over j, not over m and JL. 
The expansion of the lattice potential energy, 
cP, is then 

cP = CPo + cP"ou" +tCP&/lU"U/l + ... 
= cpo+cp"oX/le"/l+tcp~/lXyX6eaYe/l6+ ' .. (3) 

= <1>0 + <1>\ + <1>2 + .• '. 

(Note that this contracted notation involves 
some ambiguity - the reader is referred to the 
sources [1,3,7] for the full expressions.) 

If up to fourth-order terms are retained in 
(3) , the Hamiltonian of the lattice is 

where 

H = Ek + <1>0 + <1>1 + <1>2 +<1>3 +<1>4 (4) 

= Ho+Ha, 

Ho = Ek + <1>0 + <1>2, 

H a = <1>1 + <1>3 + <1>4' 

(5) 

(6) 

and Ek is the kinetic energy of the lattice. 
Ho is the 'harmonic' Hamiltonian, and Ha the 
anharmonic contribution. The equation of 
motion derived from (4) is non-linear because 
of the terms <1>3 and <1>4' In order to relinearize 
it, Leibfried and Ludwig [3] use a perturba­
tion technique based on the assumption that 
<1>3 and <1>4 are small. They as~ume, in effect, 

(7) 

where 8 is small compared to unity. The term 
<1>1, can, in centro-systemetric lattices, be 
eliminated by the choice of the reference con­
figuration of the lattice. In non-centro­
symmetric lattices, a residual term <1>1 remains , 
which is ofthe order of <1>3 [3 , p. 354]: 

(8) 

Note also that since <1>0 depends on the arbi­
trary energy reference level, the significant 
potential term in Ho is <1>2' Thus the effect of 
(7) is to assume <1>3 and <1>4 to be small relative 
to <1>2' 

The Helmholtz free energy, A, arising from 
the Hamiltonian given by (4) is calculated 
through statistical mechanics using a perturba­
tion method [3, Section 5], retaining terms to 
0(82). The result has the form [3, p. 324]. 

A = (j)+As 
= (j)+Aq+Aa, 

(9) 

where if) is the static potential energy with 
every atom in its mean position, As is the 
vibrational energy consisting of the 'quasi­
harmonic' vibrational energy, A q , and the 
'anharmonic' vibrational energy, Au. Aq has 
the form of the vibrational energy in the 
harmonic approximation, but with the eigen­
frequencies dependent on the mean con­
figuration: 

Aq = kT Lin [2 sinh (t/iwj/kT)], (10) 
j 

where T is temperature, k is Boltzmann's 
constant, h is Planck's constant and Wj is the 
frequency of the jth mode of vibration of the 
lattice. The summation is over all modes of 
vibration, of which there are 3N, where N is 
the number of atoms in the lattice. Aa is a 
sum of several terms, the forms of which are 
not important here. 
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The pressure, P, is calculated from the 
identity 

(11) 

where V is specific volume. It is shown by 
Leibfried and Ludwig[3 , Sections 7, 10] that 

(12) 

so that, in the present approximation, this 
term can be neglected in (11). Thus, from (9), 

P = _~_(aAq) +0(83) (13 ) 
dV aV T ' 

i.e. only the quasi-harmonic vibrational effects 
enter the pressure. 

Equation (13) is thus a quasi-harmonic 
equation of state in which thermal effects 
enter explicitly through A q , and which is 
implicitly strain (volume) dependent, the 
second term through the strain dependence of 
the eigenfrequencies, W j . The thermal effects 
are given approximately according to the 
approximation made in (7), to 0(82

) . For a 
given material, and thus a given cp, the cp~ , 

etc. are fixed, and the effect of the approxima­
tion (7) is to limit the amplitudes of the ther­
mally induced vibrations of the lattice. Macro­
scopically, the effect is to limit the range of 
temperatures over which (13) is accurate. 
Apart from the choice of the mean configura­
tion such that 4>1 is eliminated, no other 
assumption has been made about the mean 
configuration. This one assumption can be 
avoided simply by including a constant 
pressure term in (13). Thus (13) is valid for 
arbitrary specific volumes and confining 
pressures. The derivation of finite strain 
expansions of (13) is the subject of the next 
section. The explicit statements (7, 12, 13) of 
the approximations in the thermal contribu­
tion to (13) will be referred to when the trun­
cation of the expansions of the two terms in 
(13) is considered. 

Finally, the 'Mie-Griineisen equation' 
[1 , 2,8] follows from (13) in one additional 
step. From the form (10) of Aq and the 
thermodynamic relation between A, the 
internal energy, U, and the entropy, S: 

U=A+TS, 

it can be shown that[3 , p. 355] 

P=_~_~ dlnwj(~) 
dV f dV a In W j T 

(14) 

(15) 

where Ej is the energy of the jth mode of 
vibration and 

__ d InwJ 
'YJ - d In V (16) 

is the jth 'mode Griineisen parameter' . 
Invoking the 'Griineisen approximation' , 
that all of the 'Yj are equal, (15) becomes 

where Uq = ~ Ej is the quasi-harmonic internal 
j 

energy, and the j can be dropped from 'Y. 
Equation (17) is the Mie-Griineisen equation, 
and the Griineisen parameter, 'Y, defined in 
this way, depends only on V. A less restrictive 
procedure is to define a mean Griineisen 
parameter, 'Ye' as 

1 
'Ye = U L 'YjEj. 

q j 

(18) 

Using (18) in (15) yields the same form as (17), 
with 'Ye replacing 'Y. At higher temperatures, 
when aU modes of vibration are excited, 'Ye 
approaches 'Y, but at lower temperatures 'Ye 
may deviate from 'Y since the average in (18) 
is only over the excited modes. 
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